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The Copenhagen problem is a simple model in celestial mechanics. It serves to investigate the behavior of
a small body under the gravitational influence of two equally heavy primary bodies. We present a partition of
orbits into classes of various kinds of regular motion, chaotic motion, escape and crash. Collisions of the small
body onto one of the primaries turn out to be unexpectedly frequent, and their probability displays a scale-free
dependence on the size of the primaries. The analysis reveals a high degree of complexity so that long term
prediction may become a formidable task. Moreover, we link the results to chaotic scattering theory and the
theory of leakingHamiltonian systems.
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I. INTRODUCTION

The restricted three-body problem(RTBP) was first con-
sidered by Euler(1772) and Jacobi(1836). Later, from 1910
to 1925, the Copenhagen group around Strömgren investi-
gated numerically the case of equal main masses of the
RTBP. Hence, this problem is called a Copenhagen problem.
Despite the assumption that the third mass(the test body)
does not affect the primaries the problem is nonintegrable.
Due to its simplicity and cosmological relevance this prob-
lem triggered extensive numerical investigations until today;
we mention only the works of Szebehely[1] and Hénon
[2–5]. The RTBP, though much simpler than the general
three-body problem, can still serve as a paradigm for classi-
cal chaos, see, e.g., Richter[6]. A big part of the work
around the three-body problem deals with finding, describing
and classifying periodic orbits. But the applications are wide-
spread and cover classical deterministic chaos[6], semi-
classical quantization, quantum mechanics, chemical[7,8]
and astrophysical problems[9–12]. From diverse astrophysi-
cal viewpoints there are many recent works; the RTBP serves
as a model system to investigate the stability of(extra)solar
(sub)systems[13,14], (chaos assisted) asteroid capture[15],
and the dynamics of two massive black holes orbited by a
sun [16].

II. THE MODEL

We consider the(planar circular) restricted three-body
problem for the Copenhagen case. Two equal masses move
on a circle with Kepler frequency[25] about their common
center of gravity assumed to be fixed(see left in Fig. 1). In
the inertial system the RTBP has a time dependent potential
Vmsx,y,td=−m / r1std−s1−md / r2std where m=m1/ sm1+m2d,
and r1std, r2std are the distances to the respective primaries.
The time dependence of the potential is usually eliminated
using a corotating frame wherein the primaries rest. Then,
the test body moves in thesx,yd-plane with Jacobi’s potential
VJ=−m / r1−s1−md / r2− 1

2sx2+y2d where r1,2=sx±1/2d2+y2.
The quadratic term results from the centrifugal forceFcen
=sx,yd, whereas the Coriolis forceFCor=2sẏ,−ẋd gives no
contribution to the potential. Theenergy[26] E of this sys-

tem is conserved and(up to the factor −2) has been known
historically as Jacobi’s integralC=−2E,E= 1

2sẋ2+ ẏ2d+VJ. It
is widely believed thatE is the only(independent) integral of
this system[17]. The scaled equations of motion for the test
body in the corotating frame for the Copenhagen casem
=1/2 are

ẍ = 2ẏ + x −
x + 1/2

2r1
3 −

x − 1/2

2r2
3 ,

ÿ = − 2ẋ + y −
y

2r1
3 −

y

2r2
3 , s1d

wherein the radius variables are no longer explicitly time
dependent. The equations of motion(1) are invariant under
the symmetry operationS : sx,y,td→ sx,−y,−td. This holds
for the general casemÞ1/2. A special symmetry for the
Copenhagen case isS8 : sx,y,td→ s−x,−y,td. These are the
only known (independent) symmetries of the equations of
motion (1).

III. ORBIT TYPE DIAGRAMS

The motion is restricted to 3-dimensional surfacesE
=const in phase space. The position and extent of chaos is
studied in terms of Poincaré sections(complete in the sense
of Dullin et al. [18]). With polar coordinatessr ,fd in the
center of mass systemsCOMd the conditionṙ =0 defines a
2-dimensional surface of section in the surfaceE=const,
with two disjoint partsḟ,0 and ḟ.0. Each of these two
parts has a unique projection onto thesx,yd-plane. Figure 3

displays these projections forḟ,0, at three different energy
levels.

In contrast to common representations of Poincaré sec-
tions where the color codes indicate single orbits, hereeach
pixel is given a color according to the orbittype. We call
these diagramsorbit type diagramssOTDd. Roughly speak-
ing, we classify the orbit types into bounded motion of a few
kinds, unbounded motion and collision orbits.

Bounded motion: Generally, for nonintegrable systems
with configuration space extending to infinity it is nontrivial
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to prove the boundedness of motion for specific initial con-
ditions. Here, we give a practical definition of bounded mo-
tion: We call a motion bounded if the test body stays con-
fined for the timettimeout inside a disk with center at the
COM-origin and radiusRsystem. The higher the values of
ttimeout and Rsystem, the more plausible the numerical state-
ment bounded motionbecomes. In the limitttimeout→` this
definition becomes the precise description of boundedness in
a finite disk of radiusRsystem. Unfortunately, the higher the
values of these two parameters, the longer the numerical cal-
culation lasts. In this paper, we choosettimeout=10000 and
Rsystem=10. A lower value ofttimeout smoothens the fractal
border of bounded regions[19]. We use a symbolic orbit
classification for bounded motion which is suitable for an
automatic identification of the orbit types. The new classifi-
cation differs from the standard scheme of Strömgren, Hénon
et al. (see, e.g., Hagihara[20] for a detailed discussion). The
emphasis is on the distinction between regular motion(in-
cluding small scale chaos) on the one side and strongly cha-
otic motion (not hindered by KAM orbits[6]) on the other.
Our classification is based on an automatic detection ofx
axis passages of the test body. Two subsequentx axis pas-
sages are used to define ahalf rotation with respect to the
fixed positions of the main masses. We label a half rotation
counterclockwise around one(of the two) centers by “L,” a
half rotation clockwise by “R” and effectively no rotation is
labeled by zero “0.” For example, a quasiperiodic clockwise
orbit solely around the first center is described by the two
symbol sequencessRRR.. ;000. . .d (cf. class 1b in Fig. 2)
where the left slot of the bracket refers to revolutions around
primary 1; the right to those around primary 2. In Fig. 2
example orbits for twelve classes that we termed 1a–4 are
shown. A precise description of the classes has been given
earlier [19].

Unbounded motion(escape orbits): If the test body leaves
the central disk with radiusRsystemat a timetescape, ttimeout,
we say that the test body has left thesystemand stop the
integration. These points in the OTDs are colored from dark
blue (grey) (a small value oftescape) to light blue (grey) (a
high value oftescape). Note that the Kepler problem exhibits
ellipses for all starting positions in the configuration space
sx,yd for some energy level. Thus, our definition would be
inappropriate for orbits that never enter theinner region, say,
r &1, and are only slightly disturbed Kepler ellipses. But in
this paper, we focus our attention on the dynamics of the
motion in the inner region. Moreover, thinking of a real solar

system with more disturbing bodies, the definition is physi-
cally motivated.

Collision: A collision with the first primary body of radius
Rmassoccurs when the test body intersects the border of the
disk arounds−1

2 ,0d with radius Rmass. These points in the
OTDs are colored white. A collision with the second primary
body [at s+1

2 ,0d] is defined analogously but colored red
(grey). See the right part of Fig. 1 for a schematic picture of
OTDs.

FIG. 1. Left: A schematic picture of the re-
stricted three-body problem with equal main
masses, i.e., the Copenhagen problem. Right: A
schematic picture of orbit type diagrams. We call
the motion bounded if the test body stays con-
fined for a given timesttimeoutd inside the system’s
disk with radiusRsystem. If the test body leaves
the disk the integration is aborted and the motion
is called unbounded(escape orbit). If during the
integration a crash with one of the main masses
occurs we call the corresponding trajectory a
crash orbit.

FIG. 2. Symbol sequences for the orbit examples: Class
1a: sLLL. . . ;000. . .d, 1b: sRRR. . . ;000. . .d, 1c: sR0LLL. . . ;000. . .d.
Class 2a: s000. . . ;LLL. . .d, 2b: s000. . . ;RRRd, 2c: s000. . . ;
R0LLL. . .d. Class 3a: sLLL. . . ;LLL. . . d, 3b: sRRR. . . ;RRR. . .d,
3c: sL00LL00L. . . ;0RR00RR0. . .d, 3d: sR00RR00R. . . ;
0LL00LL0. . .d, 3e: sR0LLL. . . ;R0LLLd. Class 4:s000. . . ;000. . .d.
Note that the orbits need not be periodic to have the same symbol
sequences.
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IV. THE „x ,y…-PLANE

The pictures to the right in Fig. 3 represent OTDs with
respect to the center of masssCOMd at the origins0,0d for
different energy levels. Thesx,yd-plane (in the corotating
frame of reference) is displayed. The pictures to the left in
Fig. 3 display the regions of bounded motion in the OTDs. In
the middle column the crash basins for the three energy lev-
els are shown. The diagrams in Fig. 3 exhibit the symmetry
S8 (because it is also respected by the section condition).

Figure 3(a) shows the OTD decomposition for the fixed
energyE=−1.375. There is a main regionA of bounded mo-
tion around mass 1 which consists of a central region, sur-
rounded by five small and one tiny islands. Each region of
regular motion has a resonance, i.e., a periodic orbit at its
center. The regions in white(black) represent the start posi-
tions where the test body eventually crashes with mass 1.
Thesecrash basinswind out as spirals in the outer regions of
the diagram, due to the rotating primaries. But there appear
crash basins also in the immediate neighborhood of the

FIG. 3. (color online) Regions of bounded motion(left column), crash orbits(middle column) and together with regions of escape orbits
(right column) for three different energy levels. Thesx,yd-plane in a corotating frame of reference for the Copenhagen problem is shown.
The color of a point represents the orbit type of a test body which has been launched with the pericenter position atsx,yd for the energy level
E (see the orbit class legend below). Top (a) Decomposition of the OTD atE=−1.375. Bounded motion is indicated by the colors(grey
scales) of classes 1a–4. White(red/black) points indicate a collision with mass 1(2). Escape orbits are colored blackstescape=0d to blue
(grey) stescape=10000d. Middle row (b) Decomposition for same conditions but at the energy levelE=−1.425 781 25. Bottom(c) Decom-
position forE=−1.730 468 75. Initial condition:ṙ =0,ḟ,0. Radii of the primaries(not shown): Rmass=8.97310−5.
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COM. Note that the primary body disks are several orders of
magnitude smaller in area than the total size of crash basins.
In this representative Poincaré section, the phase space is a
close mix of crash basins, regions of bounded motion and
escape basins. The fixed energy levelE=−1.375 represents
the so-called Trojanic energy corresponding to the maxima
of Jacobi’s potential. Thus, the test body has access to the
full sx,yd-plane.

In Fig. 3(b) the correspondingsx,yd-plane for E=
−1.425 781 25 is shown. There are inaccessible regions
(grey) in the plane because the energy is smaller than the
Trojanic energy. The orange colored islandssCd belong to a
well-known orbit of type 4.

Fig. 3(c) displays thesx,yd-planes for the energyE=
−1.730 468 75. Here, the inaccessible area(grey) separates
two regions. In the outer region there is a ring of bounded
motion (rose colored; D) which separates regions of escape
orbits. In the inner zone the test body is confined. The re-
gions A and B indicate stable motion around the individual
primaries. These regions are surrounded by a chaotic mix of
areas of crash orbits with respect to the first and the second
primary body.

Interestingly, the OTDs in Fig. 3 possess both, smooth
(nonfractal) and fractal regions of the boundaries which
separate the regions of escape orbits and the crash basins. In
the context ofleaking Hamiltonian systems the boundaries
are classified to be of type II[21–23]. Here, the leakages are

defined by the crash conditions and the escape condition re-
sulting in threeexit modes. As a consequence, the boundaries
make it difficult to predict whether the test particle(e.g., an
asteroid) hits a primary body or leaves the(solar) system.
The OTDs differ only slightly from those obtained using a
suitable defined escape velocity condition, e.g.,ṙ . f2/sr
−1dg1/2, rather than the escape conditionr .Rsystem used
here. Thus, the occurrence ofescape basins[colored solid
dark blue(grey)] is not an artifact of the arbitrarily chosen
escape condition.

V. THE „x ,E…-PLANE

The diagrams in thesx,yd-plane provide information on
the phase space mixing for only a fixed energy. Hénon con-
sidered a plane which provides information about regions of
stability and regions of escape orbits using the sectiony= ẋ
=0,ẏ.0, i.e., the test body starts on thex-axis, parallel to
they-axis and in the positivey-direction. Thus, in contrast to
the section discussed before, only orbits with pericenters on
the x-axis are included. But then the energyE is used as an
ordinate. Figure 4 shows an OTD decomposition for the
sx,Ed-plane. The corresponding energy levels of the
sx,yd-diagrams in Fig. 3 are also shown. Note that the energy
E=−C/2 increases downwards andx decreases from the left
to the right. A comparison of the stability diagram in[3] (not
shown) and Fig. 4 highlights the impressive accuracy of

FIG. 4. (color online) Top: Orbit type diagram for thesx,Ed-plane. Poincaré section:y= ẋ=0,ẏ.0. Radii of the primaries:Rmass

=8.97310−5. The symbolsL1,2,3 represent thex-positions of the corresponding Lagrange points andVJsL1,2d are the potential values of the
first two. Additionally, the three energy levels of Fig. 3 are highlighted. See Fig. 3 for a color legend. Bottom: Bounded motion of the OTD
(to the left) and crash basins(to the right). Crash onto primary 1: black; crash onto primary 2: red(grey).
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Hénons work of the sixties where the speed of computation
was several orders of magnitude lower than today and terms
like deterministic chaos or fractal boundaries were only be-
ginning to emerge.

The boundaries between bounded and unbounded motion
are now seen to be more jagged than shown in the stability
diagram. Moreover, we found in the blow-ups of the diagram
many tiny islands of stability(and resonances in their cen-
ters). From chaos theory we expect indeed an infinite number
of islands of(stable) quasiperiodic(or small scale chaotic)
motion. The region between the potential values of the first
two Lagrange pointsVsL1,2d shows many tiny islands of
regular motion plus a chaotic mix of areas of crash orbits(cf.
OTD for E=−1.73 in Fig. 3).

VI. SCALING LAW FOR THE CRASH BASINS

So far the radii of the primaries were arbitrarily assumed
to be fixed atRM1,2

=8.97310−5. Figure 5 displays OTDs for
the fixed energyE=−0.5 with radii RM1,2

increasing from
10−5 to 10−1. The area of crash orbits with respect to the first
primary body follows a power law over several orders of
magnitude:Acrash,Ra with a=0.46s2d. Figure 6 shows the
corresponding log–log plot for the energy levelE=−0.5. Due
to the nonintegrability of the RTBP it seems nontrivial to
calculate exactly the power law behavior. Thus, we derive a
rough approximation forAcrashsRd. First, we consider the
RTBP when the test body is close to one primary body(just
before a crash occurs). Second, we neglect the rotation of the
primaries. Then, the situation can be(roughly) approximated
by the Kepler problem. Using the relationE=Ein−L between
the energy in the inertial systemEin and the angular momen-
tum L from Kepler’s ellipse formula it follows that

E = −
1

ra + rp
7Î 2rpra

rp + ra
, s2d

whererp denotes the perihelion andra the aphelion distance.
Solving Eq.(2) for ra yields

rasrpd = − rp −
E + rp

2

E2 − 2rp
−

Îrp
4 + 2Erp

2 + 2rp

E2 − 2rp
. s3d

Note thatra. rp.0 implies firstE,−1/2rp, and second the
negative root in Eq.(3). A collision occurs when the test
body intersects the disk with radiusR around the Kepler
singularity: rpøR. Thus, forR!1 the area of crash orbits
can be approximated byAcrashsRd<2pras0dfras0d−rasRdg.
But for rp!1, Eq. (3) is approximated byrasrpd<−1/E

+Î2rp/E2. Hence, we obtain a power lawAcrashsRd,Rb with
the exponentb=1/2. Thepower law has been approximately
confirmed by simulations of the RTBP for different values of
the mass ratiom, and for different energy levelsE (from
−1.375 up to 0.5).

VII. CONCLUSIONS

To conclude, the orbit type diagrams that we introduced
display the phase space mixing of bounded, unbounded and
crash orbits in a new kind of Poincaré section representation.
The diagrams extend known behavior in the RTBP. More-
over, they provide detailed information about extent and po-
sition of the different regions and display the complex
boundaries between them.

From the theory ofleaking Hamiltonian systems[23] it
follows that the boundaries, between the crash basins and the
regions of escape orbits represent thechaotic saddle(i.e., the
invariant manifolds) plus existing KAM tori better the
smaller the primary disks. This links the crash basins to the
foliation of the phase space. Bleheret al. [21] proposed the

FIG. 5. (color online) An extension of the crash basins[white and red(grey)] for different primary body raddii. Orbit type diagrams for
the sx,yd-plane at the energy levelE=−0.5 for the Copenhagen problem are shown. The surface of section conditions:ṙ =0,ḟ,0. Range:
x,y=−2.0. . .2.0. Radii of the primaries(from left to right): RM1

=RM2
:10−5,10−3.5,10−2.5,10−2,10−1.5,10−1. See Fig. 3 for a color legend.

FIG. 6. (color online) Log–log plot of the crash basin size in the
sx,yd-planesx,y=−2+2d at fixed energyE=−0.5 in arbitrary units
versus the primary body radiiR=10−5. . .10−1. Black line: Numeri-
cal result. Red(grey) line: Fit curveAcrash,Ra.

CRASH TEST FOR THE COPENHAGEN PROBLEM PHYSICAL REVIEW E69, 066218(2004)

066218-5



RTBP as an interesting application for a leaking Hamiltonian
system. Here we discuss this application, resulting in the
so-called type II boundaries between regions of crash and
escape orbits. Moreover, the type II boundaries confirm the
results of de Mouraet al. [22]. Due to the extended primaries
the model is more applicable to realistic situations of celes-
tial body problems than the pure RTBP. The analysis reveals
a high degree of complexity so that the long term prediction
in comparable celestial systems may become a formidable
task.

Finally, the crash basins as part of the diagrams are widely
more extended than expected. The results show how com-
paratively small primaries affect regions of crash orbits

which (to our knowledge) has not been investigated in
simple celestial models as the RTBP. The size of the crash
basins follows a power law that is close to the result of a
calculation based on Kepler’s ellipse formula.

In a companion paper[24] we investigate bifurcation
schemes of periodic orbits and link the results to the under-
lying invariant manifolds. Furthermore, we consider the gen-
eral mÞ1/2-case of the RTBP.
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